Органические вещества входящие в состав клетки презентация. Какие органические вещества входят в состав живой клетки. Значение белков в питании

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул - гормонов, пигментов, АТФ и многие другие.

В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы - полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции.

Липиды - так называют жиры и жироподобные вещества (липоиды). Относящиеся сюда вещества характеризуются растворимостью в органических растворителях и нерастворимостью (относительной) в воде.

Различают растительные жиры, имеющие при комнатной температуре жидкую консистенцию, и животные - твердую.

Функции липидов:

Структурная - фосфолипиды входят в состав клеточных мембран;

Запасающая - жиры накапливаются в клетках позвоночных животных;

Энергетическая - треть энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров, которые используются и как источник воды;

Защитная - подкожный жировой слой защищает организм от механических повреждений;

Теплоизоляционная - подкожный жир помогает сохранить тепло;

Электроизоляционная - миелин, выделяемый клетками Шванна, изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов;

Питательная - желчные кислоты и витамин D образуются из стероидов;

Смазывающая - воски покрывают кожу, шерсть, перья животных и предохраняют их от воды; восковым налетом покрыты листья многих растений; воск используется пчелами в строительстве сот;

Гормональная - гормон надпочечников - кортизон и половые гормоны имеют липидную природу, их молекулы не содержат жирных кислот.

При расщеплении 1 г жира выделяется 38,9 кДж энергии.

Углеводы

В состав углеводов входят углерод, водород и кислород. Различают следующие углеводы. При расщеплении 1 г вещества выделяется 17,6 кДж энергии.

    Моносахариды , или простые углеводы, которые в зависимости от содержания атомов углерода имеют названия триозы, пентозы, гексозы и т. д. Пентозы - рибоза и дезоксирибоза - входят в состав ДНК и РНК. Гексоза – глюкоза - служит основным источником энергии в клетке.

    Полисахариды - полимеры, мономерами которых служат моносахариды гексозы. Наиболее известными из дисахаридов (два мономера) являются сахароза и лактоза. Важнейшими полисахаридами являются крахмал и гликоген, служащие запасными веществами клеток растений и животных, а также целлюлоза - важнейший структурный компонент растительных клеток.

Растения обладают большим разнообразием углеводов, чем животные, так как способны синтезировать их на свету в процессе фотосинтеза. Важнейшие функции углеводов в клетке: энергетическая, структурная и запасающая.

Энергетическая роль состоит в том, что углеводы служат источником энергии в растительных и животных клетках; структурная - клеточная стенка у растений почти полностью состоит из полисахарида целлюлозы; запасающая - крахмал служит запасным продуктом растений. Он накапливается в процессе фотосинтеза в вегетационный период и у ряда растений откладывается в клубнях, луковицах и т. д. В животных клетках эту роль выполняет гликоген, откладывающийся преимущественно в печени.

Белки

Среди органических веществ клетки белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки. В организме человека встречается около 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения, белки построены всего из 20 различных аминокислот. Часть белков, входящих в состав клеток органов и тканей, а также аминокислоты, поступившие в организм, но не использованные в синтезе белка, подвергаются распаду с освобождением 17,6 кДж энергии на 1 г вещества.

Белки выполняют в организме много разнообразных функций: строительную (входят в состав различных структурных образований); защитную (специальные белки - антитела - способны связывать и обезвреживать микроорганизмы и чужеродные белки) и др. Кроме этого, белки участвуют в свертывании крови, предотвращая сильные кровотечения, выполняют регуляторную, сигнальную, двигательную, энергетическую, транспортную функции (перенесение некоторых веществ в организме).

Исключительно важное значение имеет каталитическая функция белков. Термин «катализ» означает «развязывание», «освобождение». Вещества, относимые к катализаторам, ускоряют химические превращения, причем состав самих катализаторов после реакции остается таким же, каким был до реакции.

Ферменты

Все ферменты, выполняющие роль катализаторов, - вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. Каталитическую активность фермента обусловливает не вся его молекула, а только небольшой ее участок - активный центр, действие которого очень специфично. В одной молекуле фермента может быть несколько активных центров.

Одни молекулы ферментов могут состоять только из белка (например, пепсин) - однокомпонентные, или простые; другие содержат два компонента: белок (апофермент) и небольшую органическую молекулу - кофермент. Установлено, что в качестве коферментов в клетке функционируют витамины. Если учесть, что ни одна реакция в клетке не может осуществляться без участия ферментов, становится очевидным то важнейшее значение, которое имеют витамины для нормальной жизнедеятельности клетки и всего организма. Отсутствие витаминов снижает активность тех ферментов, в состав которых они входят.

Активность ферментов находится в прямой зависимости от действия целого ряда факторов: температуры, кислотности (pH среды), а также от концентрации молекул субстрата (вещества, на которое они действуют), самих ферментов и коферментов (витаминов и других веществ, входящих в состав коферментов).

Стимулировать или угнетать тот или иной ферментативный процесс может действие различных биологически активных веществ, как-то: гормоны, лекарственные препараты, стимуляторы роста растений, отравляющие вещества и др.

Витамины

Витамины - биологически активные низкомолекулярные органические вещества - участвуют в обмене веществ и преобразовании энергии в большинстве случаев как компоненты ферментов.

Суточная потребность человека в витаминах составляет миллиграммы, и даже микрограммы. Известно более 20 различных витаминов.

Источником витаминов для человека являются продукты питания, в основном растительного происхождения, в некоторых случаях - и животного (витамин D, A). Некоторые витамины синтезируются в организме человека.

Недостаток витаминов вызывает заболевание - гиповитаминоз, полное их отсутствие - авитаминоз, а излишек - гипервитаминоз.

Гормоны

Гормоны - вещества, вырабатываемые железами внутренней секреции и некоторыми нервными клетками - нейрогормонами. Гормоны способны включаться в биохимические реакции, регулируя процессы метаболизма (обмена веществ и энергии).

Характерными особенностями гормонов являются:1)высокая биологическая активность;2)высокая специфичность (гормональные сигналы в «клетки-мишени»);3)дистанционность действия (перенос гормонов кровью на расстояние к клеткам-мишеням);4)относительно небольшое время существования в организме (несколько минут или часов).

Нуклеиновые кислоты

Существует 2 типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) и РНК (рибонуклеиновая кислота).

АТФ - аденозинтрифосфорная кислота, нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех молекул фосфорной кислоты.

Структура неустойчива, под влиянием ферментов переходит в АДФ – аденозиндифосфорную кислоту (отщепляется одна молекула фосфорной кислоты) с выделением 40 кДж энергии. АТФ - единый источник энергии для всех клеточных реакций.

Особенности химического строения нуклеиновых кислот обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этане индивидуального развития.

Нуклеиновые кислоты обеспечивают устойчивое сохранение наследственной информации и контролируют образование соответствующих им белков-ферментов, а белки-ферменты определяют основные особенности обмена веществ клетки.


Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. Белки важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть из них поступает с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии. БЕЛКИ


Функции белков в клетке весьма разнообразны. Важнейшая из них строительная. Белки участвуют в образовании всех клеточных мембран и органоидов клетки. Важной особенностью белков является их каталитическая функция. Все биологические катализаторы ферменты имеют белковую природу. ФУНКЦИИ БЕЛКОВ


Двигательная функция Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех движениях, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и т. д. Транспортная функция Транспортная функция белков участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму. Защитная функция Они предохраняют организм от вторжения чужеродных белков и микроорганизмов от повреждения. Так, антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки; фибрин и тромбин предохраняют организм от кровопотери. ФУНКЦИИ


Углеводы органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Углеводы весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 23 % массы животных. УГЛЕВОДЫ



Углеводы обладают несколькими функциями в клетках. Они являются превосходным источником энергии для большого числа различных процессов, протекающих в наших клетках. Некоторые углеводы могут обладать и структурной функцией. Например, вещество, благодаря которому растения имеют большие размеры и которое придает древесине прочность, является полимерной формой глюкозы, известное под названием целлюлоза. Другие типы полимерных сахаров составляют резервные формы энергии, которые известны как крахмал и гликоген. Крахмал встречается в растительных продуктах, например в картошке, а гликоген обнаруживают у животных. Углеводы необходимы для передачи сигналов от одной клетке к другой. Они способствуют также образованию контактов между клетками и с веществом, окружающим их в организме. Способность организма противостоять заражению микробами, а также ликвидация чужеродного вещества из организма также зависит от свойств углеводов. ФУНКЦИИ УГЛЕВОДОВ


Энергетическая Углеводы служат основным источником энергии для организма. В организме и клетке углеводы обладают способностью накапливаться в виде крахмала у растений и гликогена у животных. Крахмал и гликоген представляют собой запасную форму углеводов и расходуются по мере возникновения потребности в энергии. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени. ФУНКЦИИ


Липиды-широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе. Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических растворителях и практически нерастворимых в воде, является слишком расплывчатым. Суточная потребность взрослого человека в липидах граммов ЛИПИДЫ
Нуклеиновая кислота высокомолекулярное органическое соединение, биополимер, образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. НУКЛЕИНОВЫЕ КИСЛОТЫ


Дезоксирибонуклеиновая кислота (ДНК) макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках долговременное хранение информации о структуре РНК и белков. Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул, которые содержатся в клетках всех живых организмов. ТИПЫ НУКЛЕИНОВЫХ КИСЛОТ

В организмах и продуктах их жизнедеятельности обнаружено большое количество углерод содержащих соединений, характерных только для живых клеток и организмов, получивших название органических веществ. Органические вещества клетки В состав клеток входит множество органических молекул, которых нет в неживой природе. К ним относятся, в частности, белки, углеводы, жиры, нуклеиновые кислоты, АТФ.


Углерод Образует прочные ковалентные связи, обобществляя четыре электрона. Способен образовывать стабильные цепи и кольца, служащие скелетами макромолекул. Может образовывать кратные ковалентные связи с другими углеродными атомами, а также с азотом и кислородом. уникальное разнообразие органических молекул обеспечивают особые свойства углерода


Полимеры Макромолекулы - Молекулы являющиеся многозвеньевыми цепями составляющие около 90 % массы обезвоженной клетки, синтезируются из более простых молекул, называемых МОНОМЕРАМИ ПОЛИМЕРЫ РЕГУЛЯРНЫЕ НЕРЕГУЛЯРНЫЕ Природные полимеры построенные из одинаковых мономеров, таких большинство (...- А - А - А - А -...) Полимеры, в которых нет определенной закономерности в последовательности мономеров (...А - Б - В - Б - А - В-...).


БЕЛКИ протеины (греч. Protos - первый, главный) из органических веществ клетки стоят на первом месте по количеству и значению. (в вирусе табачной мозаики – около молекул) На долю белков приходится около половины сухой массы клетки. БЕЛКАМ присуща огромная молекулярная масса и колеблется от нескольких тысяч до нескольких миллионов. Например, Mr (инсулин) = 5700; Mr (яичный амбулин) = 36000; Mr (гемоглобин) =


Самые сложные среди органических соединений. В их состав входят сотни (иногда – сотни тысяч) аминокислотных остатков. Потенциально многообразие белков очень велико – каждому белку соответствует своя особая последовательность аминокислот, контролируемая генетически. БЕЛКИ Углеводы и жиры способны в организме превращаться друг в друга. Белки также могут преобразовываться в жиры и углеводы. Однако жиры и углеводы непосредственно в белки не превращаются В состав белков кроме атомов углерода, водоро-да и кислорода (как в жирах и углеводах), входят атомы азота!, а также металлы Fe, Zn, Cu


БЕЛКИ Есть белки, состоящие из 3-8 аминокислот, а есть белки, состоящие из аминокислотных остатков. Разные белковые молекулы могут отличаться друг от друга: По числу аминокислотных звеньев в молекуле белка. По порядку следования аминокислотных звеньев в цепи. По составу аминокислот в полипептиде. А3 – А17 – А5 – А5 – А13 – А4 –– А5 – … – А2


АМИНОКИСЛОТЫ Растения синтезируют все необходимые им аминокислоты сами. Животные способны производить лишь половину из них, остальные должны получать с пищей в готовом виде. НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ Аминокислоты, которые не синтезируются в животном организме и должны поступать из окружающей среды.


ОБРАЗОВАНИЕ ПОЛИПЕПТИДА Соединение аминокислот происходит через общие для них группировки: аминогруппа одной аминокислоты соединяется с карбоксильной группой другой с отщеплением молекулы воды. Между аминокислотами образуется прочная ковалентная связь -NH- CO2-, которая называется пептидной связью.


ПРОСТРАНСТВЕННАЯ СТРУКТУРА БЕЛКА Каждому белку свойственна своя особая геометрическая форма, структура или конфигурация. Первичная структура инсулина была открыта Ф. Сэнгером в 1944–54 годах; в настоящее время известна первичная структура нескольких сотен белков.





ДЕНАТУРАЦИЯ Во многих случаях он обратим, но не всегда. Существуют белки, которые после денатурации не способны восстанавливать утраченные структуры, т.е. не могут РЕНАТУРИРОВАТЬ процесс разрушения высших структур белка при воздействии на полипептидную молекулу разных факторов внешней среды (например, температуры).
ПРОФЕССИИ БЕЛКОВ Структурообразующие функции. (коллаген, гистоны) Транспортные функции. (гемоглобин, преальбумин, ионные каналы) Защитные функции. (иммуноглобулин) Регуляторные функции (соматропин, инсулин) Катализ. (ферменты) Двигательные функции. (актин, миозин) Запасные функции.


ДОМАШНЕЕ ЗАДАНИЕ Изучить § , с. 90–99 1.Вспомните, какую роль в организме человека играют белки: инсулин, пепсин, гемоглобин, фибриноген, миозин. С какой функцией белков она связана? 2. Как вы считаете, почему «жизнь есть способ существования белковых тел...»? 3. Подумать над выражением: «Все ферменты – белки, но не все белки – ферменты».

Презентация на тему "Органические вещества в клетке" по биологии в формате powerpoint. В данной презентации для школьников 9 класса рассказывается об особенностях строения и функциях белков, нуклеиновых кислот – органических веществ, составляющих основу всего живого на Земле. Работа содержит большое количество вопросов и заданий по теме. Автор презентации: Короткова Екатерина Викторовна, учитель биологии и химии.

Фрагменты из презентации

Биологический диктант

  1. Все органические вещества хорошо растворяются в воде
  2. Жиры являются источником энергии и воды
  3. Химические элементы в клетке - совсем другие, чем в неживой природе
  4. Железо накапливается в яблоках, а йод – в морской капусте
  5. Одни и те же элементы входят в состав живой и неживой природы, что свидетельствует об них единстве
  6. Самое распространенное неорганическое вещество – вода
  7. Чем активнее работает орган, тем в его клетках меньше воды
  8. Гемоглобин – это красный белок нашей крови
  9. Чтобы быть здоровым, человек должен в сутки получать с едой 100 г белка
  10. Углеводы нужны только растениям
  11. В состав клетки входят органические и неорганические вещества

Задача 1:

У больного низкий гемоглобин. Железодефицитная анемия, малокровье. Что вы можете предложить из лекарственных препаратов, фруктов, чтобы ему помочь?

Задача 2:

Больной очень нервный, раздражительный. Вероятно у него заболевание щитовидной железы – зоб. Что вы можете предложить?

Задача 3:

Преступник, чтобы скрыть следы преступления, сжег окровавленную одежду жертвы. Однако судебно-медицинская экспертиза на основании анализа пепла установила наличие крови на одежде. Каким образом?

Белки

  • Основная масса клетки 50-70%
  • Белки – это сложные органические вещества, представляющие собой полимерные молекулы, мономерами которых являются аминокислоты.

Функции белков

  • Ферментативная;
  • Транспортная;
  • Структурная;
  • Защитная …

Нуклеиновые кислоты

  • Дезоксирибонуклеиновая кислота - ДНК
  • Рибонуклеиновая кислота – РНК
  • Молекулы нуклеиновых кислот – это очень длинные полимерные цепочки (тяжи), мономерами которых являются нуклеотиды

Строение нуклеотида

Строение нуклеотида. Азотистые основания
  • Аденин
  • Гуанин
  • Цитозин
  • Тимин
  • Аденин
  • Гуанин
  • Цитозин
  • Урацил

ДНК

  • Состоит из двух полинуклеотидных цепочек
  • Г---Ц
  • Принцип комплементарности

Задание 1:

  • Составить цепь молекулы ДНК по принципу комплементарности, указать связи между азотистыми основаниями:
  • -Т-Г-Ц-Т-А-Г-Ц-Т-А-Г-Ц-А-А-Т-Т-

РНК в отличие от ДНК

  • Состоит из одной цепочки
  • Вместо дезоксирибозы – рибоза
  • Вместо Тимина – Урацил

Задание 2:

  • Самостоятельная работа с учебником § 6:
  • Найти функции молекулы РНК
  • Типы РНК по выполняемым функциям

Белки (протеины , полипептиды ) - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты , которые(имея в своём составе карбоксильную и амино- группы)обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры и их называют макромолекулами .

Структура белковой молекулы

Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего 20 видов различных аминокислот и огромное разнообразие белков создается за счет различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи - это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между -СО и -NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль - вторичная структура белка .
  • Третичная структура белка - трёхмерная пространственная “упаковка” полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S-S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Структура белков может нарушаться (подвергаться денатурации ) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией .

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки, в состав которых могут входить углеводы (гликопротеины ), жиры (липопротеины ), нуклеиновые кислоты (нуклеопротеины ) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки - ферменты - способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция - одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия).
  • Транспортная функция - белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция . Прием сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция - обеспечивается сократительными белками – актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция - антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам - гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция - при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Последние материалы раздела:

Если вычет по ндфл больше начисленной зарплаты
Если вычет по ндфл больше начисленной зарплаты

Статья поможет узнать в каких случаях дают налоговый вычет при покупке квартиры. Какая сумма возврата налога в этом случае. Сроки получения...

Возведение дроби в степень Что значит возвести в степень дробь
Возведение дроби в степень Что значит возвести в степень дробь

Тема сводится к тому, что нам необходимо производить умножение одинаковых дробей. Данная статья расскажет, какое необходимо использовать правило,...

Как болит сердце: основные причины и симптомы боли в сердце
Как болит сердце: основные причины и симптомы боли в сердце

Боль в сердце. Именно эта жалоба чаще всего звучит от пациентов, которые приходят на прием к терапевту. Этот синдром заставляет волноваться и...