Наименьшего действия. Наименьшего действия принцип. Как начать следовать Закону Наименьшего Усилия: три необходимых действия

НАИМЕНЬШЕГО ДЕЙСТВИЯ ПРИНЦИП

Один из вариационных принципов механики, согласно к-рому для данного класса сравниваемых друг с другом движений механич. системы действительным является то, для которого физ. величина, наз. действием, имеет наименьшее (точнее, стационарное) значение. Обычно Н. д. п. применяется в одной из двух форм.

а) Н. д. п. в форме Гамильтона - Остроградского устанавливает, что среди всех кинематически возможных перемещений системы из одной конфигурации в другую (близкую к первой), совершаемых за один и тот же промежуток времени, действительным является то, для к-рого действие по Гамильтону S будет наименьшим. Матем. выражение Н. д. п. имеет в этом случае вид: dS=0, где d - символ неполной (изохронной) вариации (т. е. в отличие от полной вариации в ней время не варьируется).

б) Н. д. п. в форме Мопертюи - Лагранжа устанавливает, что среди всех кинематически возможных перемещений системы из одной конфигурации в близкую к ней другую, совершаемых при сохранении одной и той же величины полной энергии системы, действительным является то, для к-рого действие по Лагранжу W будет наименьшим. Матем. выражение Н. д. п. в этом случае имеет вид DW=0, где D - символ полной вариации (в отличие от принципа Гамильтона - Остроградского, здесь варьируются не только координаты и скорости, но и время перемещения системы из одной конфигурации в другую). Н. д. п. в. этом случае справедлив только для консервативных и притом голономных систем, в то время как в первом случае Н. д. п. является более общим и, в частности, может быть распространён на неконсервативные системы. Н. д. п. пользуются для составления ур-ний движения механич. систем и для исследования общих св-в этих движений. При соответствующем обобщении понятий Н. д. п. находит приложения в механике непрерывной среды, в электродинамике, квант. механике и др.

  • - то же, что...

    Физическая энциклопедия

  • - m-оператор, оператор минимизаци и,- способ построения новых функций из других функций, состоящий в следующем...

    Математическая энциклопедия

  • - один из вариационных принципов механики, согласно к-рому для данного класса сравниваемых друг с другом движений механич. системы осуществляется то, для к-рого действие минимально...

    Естествознание. Энциклопедический словарь

  • - один из важнейших законов механики, установленный русским ученым М.В. Остроградским...

    Русская энциклопедия

  • Словарь юридических терминов

  • - в конституционном праве ряда государств принцип, согласно которому общепризнанные принципы и нормы международного права являются составной частью правовой системы соответствующей страны...

    Энциклопедия юриста

  • - в конституционном праве ряда государств принцип, согласно которому общепризнанные нормы международного права являются составной частью национальной правовой системы...

    Большой юридический словарь

  • - кратчайшее расстояние от центра заряда взрывчатого вещества до свободной поверхности - линия на най-малкото съпротивление - křivka nejmenšího odporu - Linie der geringsten Festigkeit - robbantás minimális ellenállási tengelyvonala - хамгийн бага...

    Строительный словарь

  • - при возможности перемещения точек деформируемого тела в разных направлениях каждая точка этого тела перемещается в направлении наименьшего сопротивления...

    Энциклопедический словарь по металлургии

  • - правило, по которому имеющиеся запасы принято оценивать либо по наименьшей себестоимости или по наименьшей цене продажи...

    Словарь бизнес терминов

  • - в конституционном праве ряда государств - принцип, согласно которому общепризнанные принципы и нормы международного права являются составной частью правовой системы соответствующего государства и действуют...

    Энциклопедический словарь экономики и права

  • - один из вариационных принципов механики, согласно которому для данного класса сравниваемых друг с другом движений механической системы действительным является то, для которого физическая величина,...
  • - то же, что Гаусса принцип...

    Большая Советская энциклопедия

  • - один из вариационных принципов механики; то же, что Наименьшего действия принцип...

    Большая Советская энциклопедия

  • - один из вариационных принципов механики, согласно которому для данного класса сравниваемых друг с другом движений механической системы осуществляется то, для которого действие минимально...

    Большой энциклопедический словарь

  • - Книжн. Выбирать наиболее лёгкий способ действия, избегая препятствий, уклоняясь от трудностей...

    Фразеологический словарь русского литературного языка

"НАИМЕНЬШЕГО ДЕЙСТВИЯ ПРИНЦИП" в книгах

2.5.1. Принцип действия устройства

Из книги Занимательная электроника [Нешаблонная энциклопедия полезных схем] автора Кашкаров Андрей Петрович

2.5.1. Принцип действия устройства Принцип действия устройства прост. Когда световой поток, излучаемый светодиодом HL1, отражается от объекта и попадает на фотоприемник, электронный узел, реализованный на 2 микросхемах – компараторе КР1401СА1 и таймере КР1006ВИ1, вырабатывает

Принцип действия терафима

Из книги Сокровенное знание. Теория и практика Агни Йоги автора Рерих Елена Ивановна

Принцип действия терафима 24.02.39 Вы знаете, что каждое осознание и представление какого-либо объекта тем самым приближает нас к нему. Как Вы знаете, психические наслоения объекта могут быть перенесены на его терафим. Особенно важны астральные терафимы дальних миров и

Три условия для действия Закона Наименьшего Усилия

Из книги Мудрость Дипака Чопры [Обрети желаемое, следуя 7 законам Вселенной] автора Гудмен Тим

Три условия для действия Закона Наименьшего Усилия Давайте посмотрим, какие условия требуются для привлечения в вашу жизнь этого созидательного потока энергии Вселенной - энергии любви, а значит, и для того, чтобы Закон Наименьшего Усилия начал работать в вашей

Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ

Из книги 6. Электродинамика автора Фейнман Ричард Филлипс

Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ Добавление, сделанное после лекцииКогда я учился в школе, наш учитель фи­зики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послу­шай-ка об одной интересной

5. Принцип наименьшего действия

Из книги Революция в физике автора де Бройль Луи

5. Принцип наименьшего действия Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех

Принцип действия

Из книги Руководство слесаря по замкам автора Филипс Билл

Принцип действия Возможность поворота цилиндра зависит от положения пинов, которое в свою очередь определяется силой тяжести, действием пружин и усилием ключа (или отмычки; информацию об отмычках см. в главе 9). При отсутствии ключа сила тяжести и пружины вдавливают

Стационарного действия принцип

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Наименьшего действия принцип

БСЭ

Наименьшего принуждения принцип

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

2.5.1. Принцип действия

Из книги Релейная защита в распределительных электрических Б90 сетях автора Булычев Александр Витальевич

2.5.1. Принцип действия В электрических сетях с двухсторонним питанием и в кольцевых сетях обычные токовые защиты не могут действовать селективно. Например, в электрической сети с двумя источниками питания (рис. 2.15), где выключатели и защиты установлены с обеих сторон

Принцип действия

Из книги Турбо-Суслик. Как прекратить трахать себе мозг и начать жить автора Леушкин Дмитрий

Принцип действия «Обработай это» - это, фактически, своеобразный «макрос», запускающий одной фразой целую кучу процессов в подсознании, целью которых является обработка выбранного ментального материала. В сам этот обработчик входит 7 разных модулей, часть из которых

Как начать следовать Закону Наименьшего Усилия: три необходимых действия

Из книги Руководство по выращиванию капитала от Джозефа Мэрфи, Дейла Карнеги, Экхарта Толле, Дипака Чопры, Барбары Шер, Нила Уолша автора Штерн Валентин

Как начать следовать Закону Наименьшего Усилия: три необходимых действия Чтобы Закон Наименьшего Усилия начал работать, нужно не только соблюдать названные выше три условия, но еще и выполнить три действия.Первое действие: начните принимать мир таким как естьПринимать

11. Физика и айкидо наименьшего действия

автора Минделл Арнольд

11. Физика и айкидо наименьшего действия Когда дует, то есть только ветер. Когда идет дождь, есть только дождь. Когда идут облака, сквозь них светит солнце. Если ты открываешься прозрению, то ты заодно с прозрением. И можешь использовать его полностью. Если ты открываешься

Принцип наименьшего действия Лейбница «Vis Viva»

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Принцип наименьшего действия Лейбница «Vis Viva» За принцип наименьшего действия мы все должны быть благодарны Вильгельму Готфриду Лейбницу (1646–1716). Один из первых «современных» физиков и математиков, Лейбниц жил во временя Ньютона - в эпоху, когда ученые более открыто

Айкидо - воплощение принципа наименьшего действия

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Айкидо - воплощение принципа наименьшего действия Наши психология и технология в значительной степени движимы концепцией, весьма близкой к идее наименьшего действия. Мы постоянно стараемся облегчить себе жизнь. Сегодняшние компьютеры недостаточно быстрые; они должны

Ему подчиняются, в связи с чем этот принцип является одним из ключевых положений современной физики. Получаемые с его помощью уравнения движения имеют название уравнений Эйлера - Лагранжа .

Первую формулировку принципа дал П. Мопертюи (P. Maupertuis) в году, сразу же указав на его универсальную природу, считая его приложимым к оптике и механике. Из данного принципа он вывел законы отражения и преломления света.

История

Мопертюи пришёл к этому принципу из ощущения, что совершенство Вселенной требует определенной экономии в природе и противоречит любым бесполезным расходам энергии. Естественное движение должно быть таким, чтобы сделать некоторую величину минимальной. Нужно было только найти эту величину, что он и продолжал делать. Она являлась произведением продолжительности (время) движения в пределах системы на удвоенную величину, которую мы теперь называем кинетической энергией системы.

Эйлер (в «Réflexions sur quelques loix générales de la nature» , 1748) принимает принцип наименьшего количества действия, называя действие «усилием». Его выражение в статике соответствует тому, что мы теперь назвали бы потенциальной энергией , так что его утверждение наименьшего действия в статике эквивалентно условию минимума потенциальной энергии для конфигурации равновесия.

В классической механике

Принцип наименьшего действия служит фундаментальной и стандартной основой лагранжевой и гамильтоновой формулировок механики.

Вначале рассмотрим построение таким образом лагранжевой механики . На примере физической системы с одной степенью свободы , напомним, что действие - это функционал относительно (обобщенных) координат (в случае одной степени свободы - одной координаты ), то есть выражается через так, что каждому мыслимому варианту функции сопоставляется некоторое число - действие (в этом смысле можно сказать, что действие как функционал есть правило, позволяющее для любой заданной функции вычислить вполне определенной число - также называемое действием). Действие имеет вид:

где есть лагранжиан системы, зависящий от обобщённой координаты , её первой производной по времени , а также, возможно, и явным образом от времени . Если система имеет большее число степеней свободы , то лагранжиан зависит от большего числа обобщённых координат и их первых производных по времени. Таким образом, действие является скалярным функционалом, зависящим от траектории тела.

То, что действие является скаляром, позволяет легко записать его в любых обобщенных координатах, главное только, чтобы положение (конфигурация) системы однозначно ими характеризовалось (например, вместо декартовых это могут быть полярные координаты, расстояния между точками системы, углы или их функции и т. д.).

Действие можно вычислить для совершенно произвольной траектории , какой бы «дикой» и «неестественной» она бы ни была. Однако в классической механике среди всего набора возможных траекторий существует одна-единственная, по которой тело действительно пойдёт. Принцип стационарности действия как раз и даёт ответ на вопрос, как действительно будет двигаться тело:

Это значит, что если задан лагранжиан системы, то мы с помощью вариационного исчисления можем установить, как именно будет двигаться тело, сначала получив уравнения движения - уравнения Эйлера - Лагранжа , а затем решив их. Это позволяет не только серьёзно обобщить формулировку механики, но и выбирать наиболее удобные координаты для каждой определенной задачи, не ограничиваясь декартовыми, что может быть очень полезно для получения наиболее простых и легко решаемых уравнений.

где - функция Гамильтона данной системы; - (обобщенные) координаты, - сопряженные им (обобщенные) импульсы, характеризующие вместе в каждый данный момент времени динамическое состояние системы и, являясь каждое функцией времени, характеризуя, таким образом, эволюцию (движение) системы. В этом случае для получения уравнений движения системы в форме канонических уравнений Гамильтона надо проварьировать записанное так действие независимо по всем и .

Необходимо заметить, что если из условий задачи принципиально можно найти закон движения, то это автоматически не означает, что можно построить функционал, принимающий стационарное значение при истинном движении. Примером может служить совместное движение электрических зарядов и монополей - магнитных зарядов - в электромагнитном поле . Их уравнения движения невозможно вывести из принципа стационарности действия. Аналогично некоторые гамильтоновы системы имеют уравнения движения, не выводимые из этого принципа.

Примеры

Тривиальные примеры помогают оценивать использование принципа действия через уравнения Эйлера-Лагранжа. Свободная частица (масса m и скорость v ) в Евклидовом пространстве перемещается по прямой линии. Используя уравнения Эйлера-Лагранжа, это можно показать в полярных координатах следующим образом. В отсутствие потенциала функция Лагранжа просто равна кинетической энергии

в ортогональной системе координат .

В полярных координатах кинетическая энергия, и следовательно, функция Лагранжа становится

Радиальная и угловая компонента уравнений становятся, соответственно:

Решение этих двух уравнений

Здесь - это условная запись бесконечнократного функционального интегрирования по всем траекториям x(t), а - постоянная Планка . Подчеркнём, что в принципе действие в экспоненте появляется (или может появляться) само, при изучении оператора эволюции в квантовой механике, однако для систем, имеющих точный классический (неквантовый) аналог, оно в точности равно обычному классическому действию.

Математический анализ этого выражения в классическом пределе - при достаточно больших , то есть при очень быстрых осцилляциях мнимой экспоненты - показывает, что подавляющее большинство всевозможных траекторий в этом интеграле взаимосокращаются при этом в пределе (формально при ). Для почти любого пути найдется такой путь, на котором набег фазы будет в точности противоположным, и они в сумме дадут нулевой вклад. Не сокращаются лишь те траектории, для которых действие близко к экстремальному значению (для большинства систем - минимуму). Это - чисто математический факт из теории функций комплексного переменного ; на нём, например, основан метод стационарной фазы .

В результате частица в полном согласии с законами квантовой механики движется одновременно по всем траекториям, но в обычных условиях в наблюдаемые значения дают вклад только траектории, близкие к стационарным (то есть классическим). Поскольку квантовая механика переходит в классическую в пределе больших энергий, то можно считать, что это - квантовомеханический вывод классического принципа стационарности действия .

В квантовой теории поля

В квантовой теории поля принцип стационарности действия также успешно применяется. В лагранжеву плотность здесь входят операторы соответствующих квантовых полей. Хотя правильнее тут в сущности (за исключением классического предела и отчасти квазиклассики) говорить не о принципе стационарности действия, а о фейнмановском интегрировании по траекториям в конфигурационном или фазовом пространстве этих полей - с использованием упомянутой только что лагранжевой плотности.

Дальнейшие обобщения

Более широко, под действием понимают функционал, задающий отображение из конфигурационного пространства на множество вещественных чисел и, в общем, он не обязан быть интегралом, потому что нелокальные действия в принципе возможны, по крайней мере, теоретически. Более того, конфигурационное пространство не обязательно является функциональным пространством, потому что может иметь некоммутативную геометрию.

В мы кратко рассмотрели один из самых замечательных физических принципов - принцип наименьшего действия, и остановились на примере, который, казалось бы, ему противоречит. В данной статье мы разберемся с этим принципом немного подробнее и посмотрим, что происходит в данном примере.

На этот раз нам понадобится чуть больше математики. Однако основную часть статьи я опять постараюсь изложить на элементарном уровне. Чуть более строгие и сложные моменты я буду выделять цветом, их можно пропустить без ущерба для основного понимания статьи.

Граничные условия

Начнем мы с самого простого объекта – шара, свободно двигающегося в пространстве, на который не действуют никакие силы. Такой шар, как известно, двигается равномерно и прямолинейно. Для простоты, предположим, что он двигается вдоль оси :

Чтобы точно описать его движение, как правило, задаются начальные условия. Например задается, что в начальный момент времени шар находился в точке с координатой и имел скорость . Задав начальные условия в таком виде, мы однозначно определяем дальнейшее движение шара - он будет двигаться с постоянной скоростью, и его положение в момент времени будет равно начальному положению плюс скорость, умноженная на прошедшее время: . Такой способ задания начальных условий очень естественен и интуитивно привычен. Мы задали всю необходимую информацию о движении шара в начальный момент времени, и дальше его движение определяется законами Ньютона.

Однако это не единственный способ задания движения шара. Другой альтернативный способ – это задать положение шара в два разных момента времени и . Т.е. задать, что:

1) в момент времени шар находился в точке (с координатой );
2) в момент времени шар находился в точке (с координатой ).

Выражение «находился в точке » не означает, что шар покоился в точке . В момент времени он мог пролетать через точку . Имеется ввиду, что его положение в момент времени совпадало с точкой . То же самое относится и к точке .

Эти два условия также однозначно определяют движение шара. Его движение легко вычислить. Чтобы удовлетворить обоим условиям, скорость шара, очевидно должна быть . Положение шара в момент времени будет опять равно начальному положению плюс скорость, умноженная на прошедшее время:

Заметьте, что в условиях задачи нам не потребовалось задавать начальную скорость. Она однозначно определилась из условий 1) и 2).

Задание условий вторым способом выглядит непривычно. Возможно, непонятно зачем вообще может потребоваться задавать их в таком виде. Однако, в принципе наименьшего действия используются именно условия в виде 1) и 2), а не в виде задания начального положения и начальной скорости.

Траектория с наименьшим действием

Теперь немного отвлечемся от реального свободного движения шара и рассмотрим следующую чисто математическую задачу. Допустим, у нас есть шар, который мы можем вручную перемещать каким угодно способом. При этом нам нужно выполнить условия 1) и 2). Т.е. в промежуток времени между и мы должны переместить его из точки в точку . Это можно сделать совершенно разными способами. Каждый такой способ мы будем называть траекторией движения шара и он может быть описан функцией положения шара от времени . Отложим несколько таких траектории на графике зависимости положения шарика от времени:

Например, мы можем перемещать шарик с одной и той же скоростью, равной (зеленая траектория). Или мы можем половину времени держать его в точке , а затем с двойной скоростью переместить в точку (синяя траектория). Можно сперва двигать его в противоположную от сторону, а затем уже переместить в (коричневая траектория). Можно двигать его взад и вперед (красная траектория). В общем, можно передвигать его как угодно, лишь бы соблюдались условия 1) и 2).

Для каждой такой траектории мы можем сопоставить число. В нашем примере, т.е. в отсутствии каких-либо сил, действующих на шар, это число равняется общей накопленной кинетической энергии за все время его движения в промежуток времени между и и называется действием.

В данном случае слово «накопленная» кинетическая энергия не очень точно передает смысл. Реально кинетическая энергия нигде не накапливается, накопление используется лишь для вычисления действия для траектории. В математике для такого накопления имеется очень хорошее понятие - интеграл:

Действие обычно обозначается буквой . Символ означает кинетическую энергию. Данный интеграл означает, что действие равно накопленной кинетической энергии шара за промежуток времени от до .

В качестве примера, давайте возьмем шар массой 1 кг., зададим какие-нибудь граничные условия и вычислим действие для двух разных траекторий. Пусть точка находится на расстоянии 1 метр от точки , а время отстоит от времени на 1 секунду. Т.е. мы должны переместить шар, который в начальный момент времени был в точке , за одну секунду на расстояние 1 м. вдоль оси .

В первом примере (зеленая траектория) мы перемещали шар равномерно, т.е. с одинаковой скоростью, которая, очевидно, должна быть равна: м/с. Кинетическая энергия шара в каждый момент времени равна: = 1/2 Дж. За одну секунду накопится 1/2 Дж с кинетической энергии. Т.е. действе для такой траектории равно: Дж с.

Теперь давайте шар будем не сразу переносить из точки в точку , а полсекунды придержим его в точке , а затем, за оставшееся время равномерно перенесем его в точку . В первые полсекунды шар покоится и его кинетическая энергия равна нулю. Поэтому вклад в действие этой части траектории также равен нулю. Вторые полсекунды мы переносим шар с двойной скоростью: м/с. Кинетическая энергия при этом будет равна = 2 Дж. Вклад этого промежутка времени в действие будет равен 2 Дж умножить на полсекунды, т.е. 1 Дж с. Поэтому общее действие для такой траектории получается равно Дж с.

Аналогично, любой другой траектории с заданными нами краевыми условиями 1) и 2) соответствует некоторое число, равное действию для данной траектории. Среди всех таких траекторий имеется траектория, у которой действие меньше всего. Можно доказать, что этой траекторией является зеленая траектория, т.е. равномерное движение шара. Для любой другой траектории, какой бы хитрой она не была, действие будет больше 1/2.

В математике такое сопоставление для каждой функции определенного числа называется функционалом. Достаточно часто в физике и математике возникают задачи подобные нашей, т.е. на отыскание такой функции, для которой значение определенного функционала минимально. Например, одна из задач, имевших большое историческое значение для развития математики – это задача о бахистохроне . Т.е. нахождение такой кривой, по которой шарик скатывается быстрее всего. Опять, каждую кривую можно представить функцией h(x), и каждой функции сопоставить число, в данном случае время скатывания шарика. Снова задача сводится к нахождению такой функции, для которой значение функционала минимально. Область математики, которая занимается такими задачами называется вариационным исчислением.

Принцип наименьшего действия

В разобранных выше примерах у нас появились две особые траектории, полученные двумя разными способами.

Первая траектория получена из законов физики и соответствует реальной траектории свободного шара, на который не действуют никакие силы и для которого заданы граничные условия в виде 1) и 2).

Вторая траектория получена из математической задачи нахождения траектории с заданными граничными условиями 1) и 2), для которой действие минимально.

Принцип наименьшего действия утверждает, что эти две траектории должны совпадать. Другими словами, если известно, что шарик двигался так, что выполнялись граничные условия 1) и 2), то он обязательно двигался по траектории, для которой действие минимально по сравнению с любой другой траекторией с теми же самыми граничными условиями.

Можно было бы посчитать это простым совпадением. Мало ли задач, в которых появляются равномерные траектории и прямые линии. Однако принцип наименьшего действия оказывается очень общим принципом, справедливым и в других ситуациях, например, для движения шара в равномерном поле тяжести. Для этого только нужно заменить кинетическую энергию на разность кинетической и потенциальной энергии. Эту разность называют Лагранжианом или функцией Лагранжа и действие теперь становится равно общему накопленному Лагранжиану. Фактически, функция Лагранжа содержит всю необходимую информацию о динамических свойствах системы.

Если мы запустим шар в равномерном поле тяжести таким образом, чтобы он пролетел точку в момент времени и прилетел в точку в момент времени , то он, согласно законам Ньютона полетит по параболе. Именно эта парабола совпадет с траекторий, для которой действие будет минимально.

Таким образом, для тела, двигающегося в потенциальном поле, например, в гравитационном поле Земли, функция Лагранжа равна: . Кинетическая энергия зависит от скорости тела, а потенциальная - от его положения, т.е. координат . В аналитической механике всю совокупность координат, определяющих положение системы, обычно обозначают одной буквой . Для шара, свободно двигающегося в поле тяжести, означает координаты , и .

Для обозначения скорости изменения какой-либо величины, в физике очень часто просто ставят точку над этой величиной. Например, обозначает скорость изменения координаты , или, иными словами, скорость тела в направлении . Используя эти соглашения, скорость нашего шара в аналитической механике обозначается как . Т.е. означает компоненты скорости .

Поскольку функция Лагранжа зависит скорости и координат, а также может явно зависеть от времени (явно зависит от времени означает, что значение в разные моменты времени разное, при одинаковых скоростях и положениях шара) то действие в общем виде записывается как

Не всегда минимальное

Однако в конце предыдущей части мы рассмотрели пример, когда принцип наименьшего действия явно не работает. Для этого мы опять взяли свободный шарик, на который не действуют никакие силы и поместили рядом с ним пружинящую стенку.


Граничные условия мы задали такими, что точки и совпадают. Т.е. и в момент времени и в момент времени шар должен оказаться в одной и той же точке . Одной из возможных траекторий будет являться стояние шара на месте. Т.е. весь промежуток времени между и он простоит в точке . Кинетическая и потенциальная энергия в этом случае будут равны нулю, поэтому действие для такой траектории также будет равно нулю.
Строго говоря, потенциальную энергию можно взять равной не нулю, а любому числу, поскольку важна разность потенциальной энергии в разных точках пространства. Однако изменение значения потенциальной энергии не влияет на отыскание траектории с минимальным действием. Просто для всех траекторий значение действия изменится на одно и то же число, и траектория с минимальным действием так и останется траекторией с минимальным действием. Для удобства, для нашего шара мы выберем потенциальную энергию равной нулю.
Другой возможной физической траекторией с теми же граничными условиями будет траектория при которой шарик сначала летит вправо, пролетая точку в момент времени . Затем он сталкивается с пружиной, сжимает ее, пружина, распрямляясь, отталкивает шарик обратно, и он опять пролетает мимо точки . Можно подобрать скорость движения шара такой, чтобы он, отскочив от стенки, пролетел точку точно в момент . Действие при такой траектории будет в основном равно накопленной кинетической энергии во время полета между точкой и стенкой и обратно. Будет какой-то промежуток времени, когда шарик сожмет пружину и его потенциальная энергия увеличится, и в этот промежуток времени потенциальная энергия внесет отрицательный вклад в действие. Но такой промежуток времени будет не очень большим и сильно действие не уменьшит.

На рисунке нарисованы обе физически возможные траектории движения шара. Зеленая траектория соответствует покоящемуся шару, в то время как синяя соответствует шару, отскочившему от пружинящей стенки.

Однако минимальным действием обладает только одна из них, а именно первая! У второй траектории действие больше. Получается, что в данной задаче имеются две физически возможных траектории и всего одна с минимальным действием. Т.е. в данном случае принцип наименьшего действия не работает.

Стационарные точки

Чтобы понять в чем тут дело, давайте отвлечемся пока от принципа наименьшего действия и займемся обычными функциями. Давайте возьмем какую-нибудь функцию и нарисуем ее график:

На графике я отметил зеленым цветом четыре особенных точки. Что является общим для этих точек? Представим, что график функции – это реальная горка, по которой может катиться шарик. Четыре обозначенных точки особенны тем, что если установить шарик точно в данную точку, то он никуда не укатится. Во всех остальных точках, например, точке E он не сможет устоять на месте и начнет скатываться вниз. Такие точки называют стационарными. Нахождение таких точек является полезной задачей, поскольку любой максимум или минимум функции, если она не имеет резких изломов, обязательно должен являться стационарной точкой.

Если точнее классифицировать данные точки, то точка A является абсолютным минимумом функции, т.е. ее значение меньше, чем любое другое значение функции. Точка B – не является ни максимумом, ни минимумом и называется седловой точкой. Точка С называется локальным максимумом, т.е. значение в ней больше, чем в соседних точках функции. А точка D – локальным минимумом, т.е. значение в ней меньше, чем в соседних точках функции.

Поиском таких точек занимается раздел математики, называемый математическим анализом. По другому его еще иногда называют анализом бесконечно малых, поскольку он умеет работать с бесконечно малыми величинами. С точки зрения математического анализа стационарные точки обладают одним особенным свойством, благодаря которому их и находят. Чтобы понять, что это за свойство, нам нужно понять, как выглядит функция на очень малых расстояниях от этих точек. Для этого мы возьмем микроскоп и посмотрим в него на наши точки. На рисунке показано как выглядит функция в окрестности различных точек при различном увеличении.

Видно, что при очень большом увеличении (т.е. при очень малых отклонениях x) стационарные точки выглядят абсолютно одинаково и сильно отличаются от нестационарной точки. Легко понять в чем заключается это отличие – график функции в стационарной точке при увеличении становится строго горизонтальной линией, а в нестационарной – наклонной. Именно поэтому шарик, установленный в стационарной точке, не будет скатываться.

Горизонтальность функции в стационарной точке можно выразить по другому: функция в стационарной точке практически не меняется при очень малом изменении своего аргумента , даже по сравнению с самим изменением аргумента. Функция же в нестационарной точке при малом изменении меняется пропорционально изменению . И чем больше угол наклона функции, тем сильнее меняется функция при изменении . На самом деле, функция при увеличении становится все больше похожа на касательную к графику в рассматриваемой точке.

На строгом математическом языке выражение «функция практически не меняется в точке при очень малом изменении » означает, что отношение изменения функции и изменения ее аргумента стремится к 0 при стремящемся к 0:

$$display$$\lim_{∆x \to 0} \frac {∆y(x_0)}{∆x} = \lim_{x \to 0} \frac {y(x_0+∆x)-y(x_0)}{∆x} = 0$$display$$

Для нестационарной точки это отношение стремится к ненулевому числу, которое равно тангенсу угла наклона функции в этой точке. Это же число называют производной функции в данной точке. Производная функции показывает, насколько быстро меняется функция около данной точки при небольшом изменении ее аргумента . Таким образом, стационарные точки – это точки, в которых производная функции равна 0.

Стационарные траектории

По аналогии со стационарными точками можно ввести понятие стационарных траекторий. Вспомним, что у нас каждой траектории соответствует определенное значение действия, т.е. какое-то число. Тогда может найтись такая траектория, что для близких к ней траекторий с теми же граничными условиями, соответствующие им значения действия практически не будут отличаться от действия для самой стационарной траектории. Такая траектория называется стационарной. Другими словами, любая траектория близкая к стационарной будет иметь значение действия, очень мало отличающееся от действия для этой стационарной траектории.
Опять, на математическом языке «мало отличающееся» имеет следующий точный смысл. Допустим, что у нас задан функционал для функций с требуемыми граничными условиями 1) и 2), т.е. и . Допустим, что траектория – стационарна.

Мы можем взять любую другую функцию , такую, что на концах она принимает нулевые значения, т.е. = = 0. Также возьмем переменную , которую мы будем делать все меньше и меньше. Из этих двух функций и переменной мы можем составить третью функцию , которая также будет удовлетворять граничным условиям и . При уменьшении траектория, соответствующая функции , будет все сильнее приближаться к траектории .

При этом для стационарных траекторий при малых значение функционала у траекторий будет отличаться очень мало от значения функционала для даже по сравнению с . Т.е.

$$display$$\lim_{ε \to 0} \frac {S(x"(t))-S(x(t))}ε=\lim_{ε \to 0} \frac {S(x(t)+εg(t))-S(x(t))}ε = 0$$display$$


При чем это должно быть справедливо для любой траектории , удовлетворяющей граничным условиям = = 0.

Изменение функционала при малом изменении функции (точнее, линейная часть изменения функционала, пропорциональная изменению функции) называется вариацией функционала и обозначается . От термина «вариация» и происходит название «вариационное исчисление».

Для стационарных траекторий вариация функционала .

Метод нахождения стационарных функций (не только для принципа наименьшего действия, но и для многих других задач) нашли два математика - Эйлер и Лагранж. Оказывается, что стационарная функция, чей функционал выражается интегралом, подобным интегралу действия, должна удовлетворять определенному уравнению, которое теперь называется уравнением Эйлера-Лагранжа.

Принцип стационарного действия

Ситуация с минимумом действия для траекторий аналогична ситуации с минимумом для функций. Чтобы траектория обладала наименьшим действием, она обязана быть стационарной траекторией. Однако не все стационарные траектории – это траектории с минимальным действием. Например, стационарная траектория может иметь минимальное действие локально. Т.е. у нее действие будет меньше, чем у любой другой соседней траектории. Однако где-то далеко могут находиться другие траектории, для которых действие будет еще меньше.

Оказывается, реальные тела могут двигаться не обязательно по траекториям с наименьшим действием. Они могут двигаться по более широкому набору особых траекторий, а именно -стационарным траекториям. Т.е. реальная траектория тела всегда будет стационарной. Поэтому принцип наименьшего действия правильнее назвать принципом стационарного действия. Однако по сложившейся традиции его часто называют принципом наименьшего действия, подразумевая по этим не только минимальность, но и стационарность траекторий.

Теперь мы можем записать принцип стационарного действия на математическом языке, как его обычно записывают в учебниках: .

Здесь - это обобщенные координаты, т.е. набор переменных, однозначно задающих положение системы.
- скорости изменения обобщенных координат.
- функция Лагранжа, которая зависит от обобщенных координат, их скоростей и, возможно, времени.
- действие, которое зависит от конкретной траектории движения системы (т.е. от ).

Реальные траектории системы стационарны, т.е. для них вариация действия .

Если вернуться к примеру с шаром и упругой стенкой, то объяснение этой ситуации теперь становится очень простым. При заданных граничных условиях, что шар должен и во время и во время оказаться в точке существуют две стационарные траектории. И по любой из этих траекторий может реально двигаться шар. Чтобы явно выбрать одну из траекторий, можно на движение шара наложить дополнительное условие. Например, сказать, что шар должен отскочить от стенки. Тогда траектория определится однозначно.

Из принципа наименьшего (точнее стационарного) действия следуют некоторые замечательные следствия, о которых мы поговорим в следующей части.

  • 3.1.Научные революции в истории естествознания
  • 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
  • 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
  • 3.4. Химия в механистическом мире
  • 3.5. Естествознание Нового времени и проблема философского метода
  • 3.6. Третья научная революция. Диалектизация естествознания
  • 3.7. Очищение естествознания
  • 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
  • I Естествознание XX века
  • 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
  • 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
  • 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
  • 4.3.2. Физика микромира и мегамира. Атомная физика
  • 4.3.3. Достижения в основных направлениях современной химии
  • 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
  • 4.3.5. Кибернетика и синергетика
  • Раздел III
  • I Пространство и время
  • 1.1.Развитие представлений о пространстве и времени в доньютоновский период
  • 1. 2. Пространство и время
  • 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
  • 2.1.Принцип относительности Галилея
  • 2.2. Принцип наименьшего действия
  • 2.3. Специальная теория относительности а. Эйнштейна
  • 1. Принцип относительности: все законы природы оди­ наковы во всех инерциальных системах отсчета.
  • 2.4. Элементы общей теории относительности
  • 3. Закон сохранения энергии в макроскопических процессах
  • 3.1. «Живая сила»
  • 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
  • 3.3. Внутренняя энергия
  • 3.4. Взаимопревращения различных видов энергии друг в друга
  • 4. Принцип возрастания энтропии
  • 4.1. Идеальный цикл Карно
  • 4.2. Понятие энтропии
  • 4.3. Энтропия и вероятность
  • 4.4. Порядок и хаос. Стрела времени
  • 4.5. «Демон Максвелла»
  • 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
  • 4.7. Синергетика. Рождение порядка из хаоса
  • I Элементы квантовой физики
  • 5.1. Развитие взглядов на природу света. Формула Планка
  • 5.2. Энергия, масса и импульс фотона
  • 5.3. Гипотеза де Бройля. Волновые свойства вещества
  • 5.4. Принцип неопределенности Гейзенберга
  • 5.5. Принцип дополнительности Бора
  • 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
  • 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
  • 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
  • 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
  • I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
  • 6.2. Понятие симметрии
  • 6.3. Калибровочные симметрии
  • 6.4. Взаимодействия. Классификация элементарных частиц
  • 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
  • 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
  • 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
  • Раздел IV
  • 1. Химия в системе "общество-природа"
  • I Химические обозначения
  • Раздел V
  • I Теории возникновения жизни
  • 1.1. Креационизм
  • 1.2. Самопроизвольное (спонтанное) зарождение
  • 1.3. Теория стационарного состояния
  • 1.4. Теория панспермии
  • 1.5. Биохимическая эволюция
  • 2.1. Теория эволюции Ламарка
  • 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
  • 2.3. Современное представление об эволюции
  • 3.1. Палеонтология
  • 3.2. Географическое распространение
  • 3.3. Классификация
  • 3.4. Селекция растений и животных
  • 3.5. Сравнительная анатомия
  • 3.6. Адаптивная радиация
  • 3.7. Сравнительная эмбриология
  • 3.8. Сравнительная биохимия
  • 3.9. Эволюция и генетика
  • Раздел VI. Человек
  • I Происхождение человека и цивилизации
  • 1.1.Возникновение человека
  • 1.2. Проблема этногенеза
  • 1.3. Культурогенез
  • 1.4. Появление цивилизации
  • I Человек и биосфера
  • 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
  • 7.2. Космические циклы
  • 7.3. Цикличность эволюции. Человек как космическое существо
  • I оглавление
  • Раздел I. Научный метод 7
  • Раздел II. История естествознания 42
  • Раздел III. Элементы современной физики 120
  • Раздел IV. Основные понятия и представления химии246
  • Раздел V.. Возникновение и эволюция жизни 266
  • Раздел VI. Человек 307
  • 344007, Г. Ростов-на-Дону,
  • 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.
  • 2.2. Принцип наименьшего действия

    В XVIII веке происходит дальнейшее накопление и систематизация научных результатов, отмеченные тенден­цией объединения отдельных научных достижений в стро­го упорядоченную, связную картину мира с помощью систематического применения методов математическо­го анализа к исследованию физических явлений. Рабо­та многих блестящих умов в этом направлении привела к созданию базисной теории механистической исследова­тельской программы - аналитической механики, на осно­ве положений которой были созданы различные фунда­ментальные теории, описывающие конкретный класс конк-

    ретных явлений: гидродинамика, теория упругости, аэро­динамика и т. д. Одним из важнейших результатов ана­литической механики является принцип наименьшего действия (вариационный принцип), имеющий важное зна­чение для понимания процессов, происходящих в физике конца XX века.

    Корни возникновения вариационных принципов в на­уке уходят в Древнюю Грецию и связаны с именем Геро-на из Александрии. Идея любого вариационного принци­па состоит в том, чтобы варьировать (изменять) некоторую величину, характеризующую данный процесс, и отбирать из всех возможных процессов тот, для которого данная вели­чина принимает экстремальное (максимальное или мини­мальное) значение. Герон попытался объяснить законы отражения света, варьируя величину, характеризующую длину пути, проходимым лучом света от источника к на­блюдателю при отражении его от зеркала. Он пришел к выводу, что из всех возможных путей луч света выбирает кратчайший (из всех геометрически возможных).

    В XVII веке, спустя две тысячи лет, французский мате­матик Ферма обратил внимание на принцип Герона, распро­странил его для сред с различными показателями прелом­ления, переформулировав его в связи с этим в терминах времени. Принцип Ферма гласит: в преломляющей среде, свойства которой не зависят от времени, световой луч, про­ходя через две точки, выбирает себе такой путь, чтобы вре­мя, необходимое ему для прохождения от первой точки ко второй, было минимальным. Принцип Герона оказывается частным случаем принципа Ферма для сред с постоянным коэффициентом преломления.

    Принцип Ферма привлек пристальное внимание со­временников. С одной стороны, он как нельзя лучше сви­детельствовал о «принципе экономии» в природе, о ра­циональном божественном замысле, реализованном в уст­ройстве мира, с другой - он противоречил ньютоновской корпускулярной теории света. Согласно Ньютону получа­лось, что в более плотных средах скорость света должна быть больше, в то время как из принципа Ферма вытека­ло, что в таких средах скорость света становится меньшей.

    В 1740 году математик Пьер Луи Моро де Мопертюи, критически анализируя принцип Ферма и следуя теоло-

    гическим мотивам о совершенстве и наиболее экономном устройстве Вселенной, провозгласил в работе «О различ­ных законах природы, казавшихся несовместимыми» принцип наименьшего действия. Мопертюи отказался от наименьшего времени Ферма и ввел новое понятие - дей­ствие. Действие равняется произведению импульса тела (количества движения Р = mV) на пройденный телом путь. Время не имеет какого-либо преимущества перед простран­ством, равно как и наоборот. Поэтому свет выбирает не кратчайший путь и не наименьшее время для его прохож­дения, а согласно Мопертюи, «выбирает путь, дающий бо­лее реальную экономию: путь, по которому он следует, - это путь, на котором величина действия минимальна». Принцип наименьшего действия в дальнейшем был развит в работах Эйлера и Лагранжа; он явился основой, на ко­торой Лагранж развил новую область математического анализа - вариационное исчисление. Дальнейшее обобще­ние и завершенную форму этот принцип получил в рабо­тах Гамильтона. В обобщенном виде принцип наименьше­го действия использует понятие действия, выраженного не через импульс, а через функцию Лагранжа. Для случая од­ной частицы, движущейся в некотором потенциальном поле, функция Лагранжа может быть представлена как разность кинетическойи потенциальной энергии:

    (Понятие «энергия» подробно обсуждается в главе 3 настоящего раздела.)

    Произведениеназывается элементарным действи­ем. Полным действием называется сумма всех значений на всем рассматриваемом интервале времен, иными словами, полное действие А:

    Уравнения движения частицы могут быть получены с помощью принципа наименьшего действия, согласно которо­му реальное движение происходит так, что действие оказы­вается экстремальным, то есть его вариация обращается в 0:

    Вариационный принцип Лагранжа-Гамильтона легко допускает распространение на системы, состоящие из не-

    скольких (множества) частиц. Движение таких систем обыч­но рассматривают в абстрактном пространстве (удобный ма­тематический прием) большого числа измерений. Скажем, для N точек вводят некоторое абстрактное пространство 3N координат N частиц, образующих систему, называемую конфи­гурационным пространством. Последовательность различных состояний системы изображается кривой в этом конфигу­рационном пространстве - траекторией. Рассматривая все возможные пути, соединяющие две заданные точки это­го 3N-Mepнoгo пространства, можно убедиться, что реаль­ное движение системы происходит в соответствии с прин­ципом наименьшего действия: среди всех возможных тра­екторий реализуется та, для которой действие экстремально по всему интервалу времени движения.

    При минимизации действия в классической механике получают уравнения Эйлера-Лагранжа, связь которых с законами Ньютона хорошо известна. Уравнения Эйлера-Лагранжа для лагранжиана классического электромагнит­ного поля оказываются уравнениями Максвелла. Таким образом, мы видим, что использование лагранжиана и прин­ципа наименьшего действия позволяет задавать динамику частиц. Однако лагранжиан обладает еще одной важной особенностью, что и сделало лагранжев формализм основ­ным в решении практически всех задач современной фи­зики. Дело в том, что наряду с ньютоновской механикой в физике уже в XIX веке были сформулированы законы со­хранения для некоторых физических величин: закон со­хранения энергии, закон сохранения импульса, закон сохра­нения момента импульса, закон сохранения электрическо­го заряда. Число законов сохранения в связи с развитием квантовой физики и физики элементарных частиц в на­шем столетии стало еще больше. Возникает вопрос, как найти общую основу для записи как уравнений движения (скажем, законов Ньютона или уравнений Максвелла), так и сохраняющихся во времени величин. Оказалось, что та­кой основой является использование лагранжева форма­лизма, ибо лагранжиан конкретной теории оказывается инвариантным (неизменным) относительно преобразований, соответствующих конкретному рассматриваемому в данной теории абстрактному пространству, следствием чего и яв­ляются законы сохранения. Эти особенности лагранжиа-

    на привели к целесообразности формулировки физических теорий на языке лагранжианов. Осознание этого обстоя­тельства пришло в физику благодаря возникновению тео­рии относительности Эйнштейна.

    "
    P. Maupertuis ) в 1744 году , сразу же указав на его универсальную природу и считая его приложимым к оптике и механике. Из данного принципа он вывел законы отражения и преломления света.

    Энциклопедичный YouTube

    • 1 / 5

      Математическое исследование и развитие принципа Ферма провёл Христиан Гюйгенс , после чего тему активно обсуждали крупнейшие учёные XVII века. Лейбниц в 1669 году ввёл в физику фундаментальное понятие действия : «Формальные действия движения пропорциональны… произведению количества материи, расстояний, на которые они передвигаются, и скорости».

      Параллельно с анализом основ механики развивались методы решения вариационных задач. Исаак Ньютон в своих «Математических началах натуральной философии » (1687 год) поставил и решил первую вариационную задачу: найти такую форму тела вращения, движущегося в сопротивляющейся среде вдоль своей оси, для которой испытываемое сопротивление было бы наименьшим. Почти одновременно появились и другие вариационные проблемы: задача о брахистохроне (1696), форма цепной линии и др.

      Решающие события произошли в 1744 году. Леонард Эйлер опубликовал первую общую работу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»), а Пьер Луи де Мопертюи в трактате «Согласование различных законов природы, которые до сих пор казались несовместимыми» дал первую формулировку принципа наименьшего действия: «путь, которого придерживается свет, является путём, для которого количество действия будет наименьшим». Он продемонстрировал выполнение этого закона как для отражения, так и для преломления света. В ответ на статью Мопертюи Эйлер опубликовал (в том же 1744 году) работу «Об определении движения брошенных тел в несопротивляющейся среде методом максимумов и минимумов», и в этом труде он придал принципу Мопертюи общемеханический характер: «Так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, когда на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума. Далее Эйлер сформулировал этот закон: траектория тела осуществляет минимум ∫ m v d s {\displaystyle \int mv\ ds} . Затем он применил его, выведя законы движения в однородном поле тяжести и в нескольких других случаях.

      В 1746 году Мопертюи в новой работе согласился с мнением Эйлера и провозгласил самую общую версию своего принципа: «Когда в природе происходит некоторое изменение, количество действия, необходимое для этого изменения, является наименьшим возможным. Количество действия есть произведение массы тел на их скорость и на расстояние, которое они пробегают». В развернувшейся широкой дискуссии Эйлер поддержал приоритет Мопертюи и аргументировал всеобщий характер нового закона: «вся динамика и гидродинамика могут быть с удивительной легкостью раскрыты посредством одного только метода максимумов и минимумов».

      Новый этап начался в 1760-1761 годах, когда Жозеф Луи Лагранж ввёл строгое понятие вариации функции, придал вариационному исчислению современный вид и распространил принцип наименьшего действия на произвольную механическую систему (то есть не только на свободные материальные точки). Тем самым было положено начало аналитической механике. Дальнейшее обобщение принципа осуществил Карл Густав Якоб Якоби в 1837 году - он рассмотрел проблему геометрически, как нахождение экстремалей вариационной задачи в конфигурационном пространстве с неевклидовой метрикой. В частности, Якоби указал, что при отсутствии внешних сил траектория системы представляет собой геодезическую линию в конфигурационном пространстве.

      Подход Гамильтона оказался универсальным и высокоэффективным в математических моделях физики, особенно для квантовой механики . Его эвристическая сила была подтверждена при создании Общей теории относительности , когда Давид Гильберт применил гамильтонов принцип для вывода окончательных уравнений гравитационного поля (1915 год).

      В классической механике

      Принцип наименьшего действия служит фундаментальной и стандартной основой лагранжевой и гамильтоновой формулировок механики.

      Вначале рассмотрим построение таким образом лагранжевой механики . На примере физической системы с одной степенью свободы , напомним, что действие - это функционал относительно (обобщённых) координат (в случае одной степени свободы - одной координаты ), то есть оно выражается через q (t) {\displaystyle q(t)} так, что каждому мыслимому варианту функции q (t) {\displaystyle q(t)} сопоставляется некоторое число - действие (в этом смысле можно сказать, что действие как функционал есть правило, позволяющее для любой заданной функции q (t) {\displaystyle q(t)} вычислить вполне определённое число - также называемое действием). Действие имеет вид:

      S [ q ] = ∫ L (q (t) , q ˙ (t) , t) d t , {\displaystyle S[q]=\int {\mathcal {L}}(q(t),{\dot {q}}(t),t)dt,}

      где L (q (t) , q ˙ (t) , t) {\displaystyle {\mathcal {L}}(q(t),{\dot {q}}(t),t)} есть лагранжиан системы, зависящий от обобщённой координаты q {\displaystyle q} , её первой производной по времени q ˙ {\displaystyle {\dot {q}}} , а также, возможно, и явным образом от времени t {\displaystyle t} . Если система имеет большее число степеней свободы n {\displaystyle n} , то лагранжиан зависит от большего числа обобщённых координат q i (t) , i = 1 , 2 , … , n {\displaystyle q_{i}(t),\ i=1,2,\dots ,n} и их первых производных по времени. Таким образом, действие является скалярным функционалом, зависящим от траектории тела.

      То, что действие является скаляром, позволяет легко записать его в любых обобщённых координатах, главное только, чтобы положение (конфигурация) системы однозначно ими характеризовалось (например, вместо декартовых это могут быть полярные координаты, расстояния между точками системы, углы или их функции и т. д.).

      Действие можно вычислить для совершенно произвольной траектории q (t) {\displaystyle q(t)} , какой бы «дикой» и «неестественной» она бы ни была. Однако в классической механике среди всего набора возможных траекторий существует одна-единственная, по которой тело действительно пойдёт. Принцип стационарности действия как раз и даёт ответ на вопрос, как действительно будет двигаться тело:

      Это значит, что если задан лагранжиан системы, то мы с помощью вариационного исчисления можем установить, как именно будет двигаться тело, сначала получив уравнения движения - уравнения Эйлера - Лагранжа , а затем решив их. Это позволяет не только серьёзно обобщить формулировку механики, но и выбирать наиболее удобные координаты для каждой определённой задачи, не ограничиваясь декартовыми, что может быть очень полезно для получения наиболее простых и легко решаемых уравнений.

      S [ p , q ] = ∫ (∑ i p i d q i − H (q , p , t) d t) = ∫ (∑ i p i q ˙ i − H (q , p , t)) d t , {\displaystyle S=\int {\big (}\sum _{i}p_{i}dq_{i}-{\mathcal {H}}(q,p,t)dt{\big)}=\int {\big (}\sum _{i}p_{i}{\dot {q}}_{i}-{\mathcal {H}}(q,p,t){\big)}dt,}

      где H (q , p , t) ≡ H (q 1 , q 2 , … , q N , p 1 , p 2 , … , p N , t) {\displaystyle {\mathcal {H}}(q,p,t)\equiv {\mathcal {H}}(q_{1},q_{2},\dots ,q_{N},p_{1},p_{2},\dots ,p_{N},t)} - функция Гамильтона данной системы; q ≡ q 1 , q 2 , … , q N {\displaystyle q\equiv q_{1},q_{2},\dots ,q_{N}} - (обобщённые) координаты, p ≡ p 1 , p 2 , … , p N {\displaystyle p\equiv p_{1},p_{2},\dots ,p_{N}} - сопряжённые им (обобщённые) импульсы, характеризующие вместе в каждый данный момент времени динамическое состояние системы и, являясь каждое функцией времени, характеризуя, таким образом, эволюцию (движение) системы. В этом случае для получения уравнений движения системы в форме канонических уравнений Гамильтона надо проварьировать записанное так действие независимо по всем q i {\displaystyle q_{i}} и p i {\displaystyle p_{i}} .

      Необходимо заметить, что если из условий задачи принципиально можно найти закон движения, то это автоматически не означает, что можно построить функционал, принимающий стационарное значение при истинном движении. Примером может служить совместное движение электрических зарядов и монополей - магнитных зарядов - в электромагнитном поле . Их уравнения движения невозможно вывести из принципа стационарности действия. Аналогично некоторые гамильтоновы системы имеют уравнения движения, не выводимые из этого принципа.

      Примеры

      Тривиальные примеры помогают оценивать использование принципа действия через уравнения Эйлера-Лагранжа. Свободная частица (масса m и скорость v ) в евклидовом пространстве перемещается по прямой линии. Используя уравнения Эйлера-Лагранжа, это можно показать в полярных координатах следующим образом. В отсутствие потенциала функция Лагранжа просто равна кинетической энергии

      1 2 m v 2 = 1 2 m (x ˙ 2 + y ˙ 2) {\displaystyle {\frac {1}{2}}mv^{2}={\frac {1}{2}}m\left({\dot {x}}^{2}+{\dot {y}}^{2}\right)} ψ = ∫ [ D x ] e (i S [ x ] / ℏ) . {\displaystyle \psi =\int e^{({iS[x]}/{\hbar })}\,.}

      Здесь ∫ [ D x ] {\displaystyle \int } - это условная запись бесконечнократного функционального интегрирования по всем траекториям x(t), а ℏ {\displaystyle \hbar } - постоянная Планка . Подчеркнём, что в принципе действие в экспоненте появляется (или может появляться) само, при изучении оператора эволюции в квантовой механике, однако для систем, имеющих точный классический (неквантовый) аналог, оно в точности равно обычному классическому действию.

      Математический анализ этого выражения в классическом пределе - при достаточно больших S / ℏ {\displaystyle S/\hbar } , то есть при очень быстрых осцилляциях мнимой экспоненты - показывает, что подавляющее большинство всевозможных траекторий в этом интеграле взаимосокращаются при этом в пределе (формально при S / ℏ → ∞ {\displaystyle S/\hbar \rightarrow \infty } ). Для почти любого пути найдется такой путь, на котором набег фазы будет в точности противоположным, и они в сумме дадут нулевой вклад. Не сокращаются лишь те траектории, для которых действие близко к экстремальному значению (для большинства систем - минимуму). Это - чисто математический факт из

    Последние материалы раздела:

    Сырокопченая колбаса в домашних условиях: особенности приготовления, лучшие рецепты и отзывы Салями колбаса сырокопченая
    Сырокопченая колбаса в домашних условиях: особенности приготовления, лучшие рецепты и отзывы Салями колбаса сырокопченая

    Обычно для колбасных оболочек используют кишки, пищеводы и мочевые пузыри.Кишки под воздействием своего содержимого, ферментов и кислот желудочного...

    Чудодейственная сила материнской молитвы
    Чудодейственная сила материнской молитвы

    Молитва об обращении заблудшихВсевышний Боже, Владыко и Содетелю всея твари, наполняй вся величеством Твоим и содержай силою Твоею! Тебе...

    Ягоды асаи - полезные свойства, отзывы и противопоказания
    Ягоды асаи - полезные свойства, отзывы и противопоказания

    Про ягоды асаи в мире ходит немало различных слухов и мнений, касающихся их пользы, уникального состава и интересного происхождения. В мире этот...